
ECE6950: Deep Learning Efficiency

Optimizing Large Language Model Inference Through CPU-
GPU Hybrid Execution

Final Report

Jacob Benjamine Ioffe
Department of Computer Science
Cornell-Tech
New York, NY 10044 USA
ji97@cornell.edu

Abstract

Scaling Large Language Models (LLMs) to tens or even hundreds of thou-
sands of tokens in their context windows pushes the limits of current infer-
ence techniques. Although prior work has primarily focused on production-
scale GPU clusters, little attention has been paid to resource-constrained,
desktop-grade consumer hardware—environments where cost and avail-
ability motivate alternative approaches. In these scenarios, GPU-only de-
coding often underutilizes GPU parallelism during the sequential decode
phase and struggles with memory demands as context lengths grow.
In this work, we investigate a hybrid CPU-GPU inference paradigm that
offloads LLM decoding to the CPU, aiming to enable ultra-long context
inference on commodity devices. We experiment with the LLaMA 3.2 1B-
parameter model, evaluating dynamic and offloaded Key-Value (KV) cache
strategies, quantization approaches, and single-batch inference scenarios.
Our results show that while CPU decoding is less efficient at short con-
texts, it achieves nearly one-third of the GPU throughput at very large
contexts (e.g., 32K tokens), allowing us to double or even quadruple the
maximum feasible context length compared to GPU-only decoding without
running out of memory. These findings highlight that offloading decoding
to the CPU offers a viable path to long-context inference in consumer-grade
settings, prompting further research into advanced cache management,
compression techniques, and adaptive runtime policies to bridge the effi-
ciency gap and unlock new, memory-intensive applications of LLMs.

1 Introduction

Modern Large Language Models (LLMs) have demonstrated remarkable capabilities in
understanding and reasoning over extensive textual input, often spanning tens of thousands
of tokens. However, achieving efficient inference for such long contexts remains challenging
on commodity hardware. Traditionally, both the prefill phase (which processes the entire
input context in parallel) and the decode phase (which generates output tokens one-by-one)
are executed on GPUs. While GPUs excel at parallelized batch operations, the inherently
sequential decode phase can lead to underutilization of GPU resources and escalating
memory demands due to the rapidly growing Key-Value (KV) cache.

These constraints are particularly salient in desktop-grade consumer environments, where
GPU memory capacity may be limited and cost considerations preclude large-scale clusters.
To address these issues, we explore hybrid CPU-GPU execution strategies that offload the
decode phase onto the CPU. Offloading has the potential to alleviate GPU memory pressure
and enable significantly larger context lengths, albeit at a potential cost to throughput and
latency. Our primary aim is to characterize these trade-offs, providing insights into when
and how CPU offloading can be advantageous.

1



ECE6950: Deep Learning Efficiency

2 Research Question and Hypothesis

Our core question is:

How does CPU decode offloading impact achievable context length, latency, and
memory consumption for single-batch LLM inference on desktop-grade GPUs?

We hypothesize that:

CPU decode offloading can enable doubling the context length capacity (e.g., from
16K to 32K tokens) at the expense of no more than a 50% reduction in throughput
compared to GPU-only decoding.

This hypothesis reflects a strategic trade-off: achieving significantly longer context windows
while only partially sacrificing throughput, potentially opening new applications and
deployment scenarios on constrained hardware.

3 Related Work

Our work on hybrid CPU-GPU execution for LLM inference builds upon several research
threads in serving systems, phase-aware scheduling, and memory management. We also
draw motivation from the latest developments in LLM architectures, particularly the Llama
3 family of models Dubey et al. (2024).

Recent systems research has made significant advances in optimizing LLM inference through
various approaches. Key innovations include continuous batching and efficient memory
management techniques for key-value caches Patel et al. (2024). The Splitwise system
demonstrates that splitting computation between prompt and token generation phases can
lead to substantial efficiency gains by matching computational requirements to hardware
capabilities. This approach is particularly relevant given the distinct characteristics of these
phases: prompt computation being compute-intensive while token generation is more
memory-bound.

Our work extends these insights by exploring optimized KV cache strategies and CPU
decode offloading specifically for the Llama 3.2-1B model. We focus on single-batch inference
scenarios on consumer-grade GPUs, providing a detailed investigation of hybrid execution
strategies for edge devices. This investigation is particularly timely given the growing
interest in deploying smaller, efficient LLMs like Llama 3.2-1B in resource-constrained
environments while maintaining high performance.

4 Methods

We conduct experiments using the LLaMA 3.2 1B parameter model, running on a desktop-
grade environment featuring an NVIDIA RTX 6000 GPU and an Intel Xeon CPU. Our
benchmarking framework isolates the prefill and decode steps, allowing fine-grained control
over where computations and cache storage occur. We measure:

• Throughput: tokens generated per second during decoding.
• Memory Usage: peak GPU and CPU memory consumption at varying context

lengths.
• Latency: mean and tail latencies for token generation.

To facilitate flexible experimentation with KV cache placement and management, we lever-
age the HuggingFace Cache framework. This infrastructure standardizes cache operations
(updates, reorderings for beam search, etc.) across multiple backends. We consider:

1. Dynamic Cache (GPU-only): The entire KV cache is maintained on the GPU, scaling
dynamically with context length.

2



ECE6950: Deep Learning Efficiency

2. Offloaded Cache (CPU-GPU): Segments of the KV cache are offloaded to CPU
memory, with prefetching and eviction policies to mitigate data transfer overheads.

3. Quantized Cache: A simple min-max quantization scheme to reduce KV cache
footprint, though initial attempts showed limited effectiveness.

These strategies enable us to fairly compare different device placements and compression
techniques. By systematically varying context lengths and applying these cache configura-
tions, we quantify the throughput-memory-latency trade-offs and assess the feasibility of
CPU decode offloading for ultra-long context inference on commodity hardware.

5 Results

5.1 Initial KV Cache Strategy Analysis

Our initial experiments evaluate different KV cache strategies for GPU-based decoding
across varying context lengths. We observe distinct performance cliffs as context length
increases: from 4K to 8K tokens, throughput decreases by approximately 15%, followed by
a 35% reduction from 8K to 16K tokens. The dynamic cache strategy achieves the highest
throughput at moderate context lengths, reaching 21.39 tokens/s at 4K tokens with 2.64 GB
peak memory usage. At 16K tokens, throughput drops to 12.54 tokens/s while memory
consumption increases to 6.37 GB.

Comparing strategies at moderate context lengths reveals that while offloaded caches
provide more stable performance across context lengths, they consistently operate about
20% slower than dynamic caches. Our initial experiments with quantized caches show
minimal benefits, with memory usage patterns similar to unquantized approaches. This
suggests that more sophisticated quantization schemes may be necessary for meaningful
memory reduction.

At extreme context lengths, the performance differences between strategies become less
pronounced. All approaches converge to similar throughput levels between 5.1-5.5 tokens/s
at 32K tokens, with dynamic cache maintaining a slight edge at 5.49 tokens/s compared to
5.13 tokens/s for offloaded cache. While all strategies successfully reach 32K token contexts,
they all suffer from substantial memory overhead, requiring over 18GB at maximum context
lengths. These severe resource constraints and significant throughput degradation—a
roughly 60% drop from 16K to 32K tokens—indicate fundamental limitations in GPU-
only approaches, motivating our investigation of CPU decode offloading as an alternative
solution.

5.2 CPU Decode Offloading and Hybrid Execution

Our exploration shows that CPU decode offloading enables processing of extremely large
context lengths that exceed GPU memory limits. While GPU-only decoding encounters
CUDA memory allocation errors beyond ∼65K tokens, CPU decoding successfully pro-
cesses contexts as large as 131K tokens. This result directly supports our hypothesis that
offloading the decoding step to CPU allows for ultra-long context inference—albeit at
reduced throughput.

At shorter context lengths (e.g., 1K–2K tokens), CPU decoding achieves only about 10%
of GPU throughput. However, as we increase the context length, CPU decoding becomes
relatively more efficient. By 32K contexts, CPU decoding reaches approximately 27–31% of
GPU decode speed, and at longer output lengths, this ratio improves further. Such trends
indicate that fixed overheads in CPU decoding are better amortized as the context and
output sizes grow.

Figure 1 (left) presents the CPU-to-GPU throughput ratio across context lengths, showing
gradual improvement with scale. At 32K context, CPU decoding provides a substantial
fraction of GPU speed while avoiding GPU memory exhaustion. Figure 1 (right) shows
that token-level tail latencies (P99) increase predictably with context length under CPU
decoding, but remain stable and manageable, indicating no catastrophic performance cliffs.

3



ECE6950: Deep Learning Efficiency

Figure 1: Left: CPU-to-GPU throughput ratio vs. context length for various output lengths.
CPU decoding starts at about 10% of GPU throughput at small contexts but improves to
nearly 30% at 32K tokens, especially at longer output sequences (e.g., 500 tokens). Right:
P99 latency for CPU decoding as a function of context length shows predictable, gradual
increases even as context lengths grow beyond 30K tokens.

Figure 2: Left: GPU Memory per tokens/second vs. context length. GPU decoding (blue)
becomes increasingly GPU-memory-inefficient, while CPU decoding (orange) remains flat
near zero GPU memory use. Right: CPU Memory per tokens/second vs. context length.
CPU decoding imposes a higher CPU memory cost as contexts scale, indicating a clear
trade-off in resource usage.

In terms of memory trade-offs, CPU decoding dramatically reduces GPU memory usage
but shifts the burden onto CPU memory. Figures 2 (right and left) illustrate these dynamics:
GPU-only decoding rapidly becomes GPU-memory-inefficient with larger contexts, whereas
CPU decoding keeps GPU memory usage nearly constant at the expense of consuming more
CPU memory per token/second.

5.2.1 Quantitative Analysis Across Context Lengths

Table 1 presents a comprehensive comparison of memory usage and throughput across
different context lengths and decoding strategies. At moderate context lengths (32K tokens),
GPU-only decoding with dynamic cache achieves the highest throughput at 45.00 tokens/s
while consuming 2.5 GB GPU and 3.6 GB CPU memory. The offloaded cache variant shows
somewhat reduced performance at 29.06 tokens/s with comparable memory utilization.
In contrast, CPU decoding strategies maintain a consistent but lower throughput of ap-
proximately 4 tokens/s while using minimal GPU memory (∼8 MB), though at the cost of
increased CPU memory consumption ranging from 7.9 to 8.4 GB.

The advantages of CPU decoding become particularly evident at ultra-long contexts (64K
tokens), where GPU-only strategies fail due to CUDA out-of-memory errors. Both dynamic
and offloaded CPU decoding strategies remain operational at this scale, though with reduced
throughput of approximately 1.9 tokens/s. Notably, GPU memory usage remains minimal
while CPU memory consumption increases only moderately to 8.6 GB. The offloaded cache
strategy shows marginally better performance (1.92 vs 1.85 tokens/s) and slightly lower

4



ECE6950: Deep Learning Efficiency

CPU memory usage (8.60 vs 8.65 GB) compared to the dynamic cache approach at these
extreme lengths.

These results illuminate a fundamental trade-off in LLM inference: while CPU decoding
incurs a substantial throughput penalty, it enables processing of previously unattainable
context lengths with predictable resource utilization. This capability opens new possibilities
for applications requiring ultra-long context processing, despite the reduced processing
speed.

Table 1: Memory and Throughput Analysis Across Context Lengths. At 32K tokens, both
GPU and CPU decoding succeed, while at 64K tokens, only CPU decoding remains viable
due to GPU OOM errors.

Context CPU Strategy GPU Mem CPU Mem Tokens/s
Length Decode (MB) (MB)

32K

False Dynamic 2,517.19 3,598.43 45.00
False Offloaded 2,385.65 3,960.03 29.06
True Dynamic 8.12 7,950.41 4.15
True Offloaded 8.12 8,426.19 4.01

64K True Dynamic 8.12 8,649.08 1.85
True Offloaded 8.12 8,600.33 1.92
False Dynamic Failed - CUDA Out of Memory
False Offloaded Failed - CUDA Out of Memory

6 Discussion and Future Directions

Our findings highlight a fundamental trade-off in hybrid CPU-GPU inference for large
language models: while CPU decoding offloading enables surpassing GPU memory con-
straints and achieving significantly larger context windows, it incurs non-trivial throughput
penalties. For scenarios that prioritize maximal context length—such as large-scale code
analysis, long-form content synthesis, or multi-document reasoning—this approach could
unlock new capabilities on commodity hardware. However, practitioners must weigh these
gains against the increased inference latency and reduced efficiency, particularly at shorter
context lengths.

A key insight emerging from our experiments is that the relative cost of CPU decoding
diminishes as context lengths grow. Although CPU decoding is initially far less efficient
than its GPU counterpart, at extremely large contexts (32K and beyond), it approaches
roughly 30% of the GPU throughput, reflecting better amortization of fixed overheads.
This observation suggests that hybrid strategies might be most beneficial for specialized,
long-context use cases rather than general-purpose inference.

Despite these encouraging results, several critical challenges and avenues for improvement
remain. Foremost among them is the development of more sophisticated key-value (KV)
cache management and quantization techniques. Initial attempts at KV cache quantization,
including min-max approaches and experimental methods such as quest or KIVI, provided
limited gains and encountered compatibility issues with LLaMA3.2’s attention mechanisms
and hardware configurations. Device mismatches, CUDA driver inconsistencies, and ver-
sion incompatibilities with quantization toolkits (e.g., quanto) all contributed to significant
engineering overhead. These practical obstacles underscore the complexity of integrating
advanced compression and quantization pipelines into LLM inference stacks, especially
given the rapid evolution of model architectures and toolchains.

Future work should focus on developing robust, hardware-agnostic KV cache compression
schemes tailored to CPU offloading. Novel quantization and sparsity methods that adapt to
the changing nature of the KV cache over the generation process could substantially reduce
CPU memory footprint without sacrificing quality. Additionally, more granular offloading
strategies such as selectively offloading only a subset of layers or token positions to the

5



ECE6950: Deep Learning Efficiency

CPU remain an intriguing possibility. Our initial attempts to offload only the final layers,
rather than the entire decoding phase, encountered persistent device-mismatch issues and
integration complexities. With more stable toolchains and better abstractions, such partial
offloading strategies could potentially strike a more favorable balance between memory
footprint and computational speed.

Another promising direction involves dynamic runtime policies that leverage predictive
modeling. By actively monitoring token-level throughput, latency, and resource consump-
tion, the system could adaptively reconfigure CPU-GPU placements and KV caching strate-
gies on-the-fly. Such adaptive inference pipelines, inspired by recent phase-aware schedul-
ing techniques in LLM serving systems, may achieve near-optimal resource utilization
across a wide range of context lengths and workloads.

Finally, the insights gained from this initial exploration motivate a broader reconsideration
of decoding algorithms and model internals. Although current generation methods are
GPU-oriented, certain decoding heuristics or approximate sampling techniques might
prove better suited for CPU-centric execution. By co-designing the decoding algorithm and
hardware placement strategies, future systems could further mitigate the performance gap,
delivering truly hybrid inference regimes that harness the complementary strengths of CPU
and GPU.

In summary, while CPU decode offloading currently represents a strategic compromise
offering extraordinary context capacity at a notable throughput cost, it also serves as a
catalyst for innovation in LLM systems design. By addressing the engineering difficulties
encountered in quantization and granularity control, and by developing adaptive, data-
driven device-placement policies, future research may approach GPU-level efficiency even at
ultra-long context lengths. As toolchains mature and quantization strategies improve, CPU
offloading may become an even more attractive option for large-scale, memory-intensive
inference scenarios.

7 Conclusion

In this work, we examined the practicality of offloading the LLM decoding phase to the
CPU, enabling significantly larger context lengths than is feasible with GPU-only decoding.
While this approach comes at the cost of reduced throughput, it provides a strategic trade-off
for memory-constrained setups. Our findings lay the groundwork for future explorations
in more advanced KV cache management, adaptive device placement, and quantization
techniques that could bring CPU-based inference closer to GPU-level efficiency in handling
ultra-long contexts.

References
Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,

Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3
herd of models. arXiv preprint arXiv:2407.21783, 2024.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed Maleki,
and Ricardo Bianchini. Splitwise: Efficient generative llm inference using phase splitting.
In 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA),
pp. 118–132. IEEE, 2024.

6


	Introduction
	Research Question and Hypothesis
	Related Work
	Methods
	Results
	Initial KV Cache Strategy Analysis
	CPU Decode Offloading and Hybrid Execution
	Quantitative Analysis Across Context Lengths


	Discussion and Future Directions
	Conclusion

