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1 Introduction
Cardiovascular diseases are a leading cause of mortality worldwide, necessitating timely and accurate
diagnostic methods [1, 2, 3]. Cardiac auscultation, despite being a cost-effective tool, requires exten-
sive training and expertise. Computer-aided decision systems based on auscultation could help address
this challenge by assisting healthcare professionals in diagnosing cardiac conditions. However, the lack
of large, publicly available datasets with detailed annotations has hindered the development of effective
recommendation systems in clinical trials. Cardiac auscultation involves listening to heart sounds using a
stethoscope, with specific sounds indicating normal or abnormal cardiac function. Murmurs, clicks, and
snaps are additional sounds associated with turbulent blood flow, often indicating underlying cardiac con-
ditions [4]. Understanding the characteristics of these sounds is crucial for accurate diagnosis and referral
of patients.

Accurate detection and classification of heart murmurs in pediatric patients are critical for early diag-
nosis and appropriate clinical intervention. Traditional methods often rely on manual feature extraction
and heuristic algorithms, which may not effectively capture the complexity of heart sound patterns. In
contrast, machine learning, particularly deep learning, offers a promising approach for automating this
analysis. Leveraging newly available datasets such as the CirCor DigiScope Phonocardiogram dataset [5],
machine learning models can automatically learn discriminative features from raw data, enhancing di-
agnostic accuracy and clinical utility. These models can be trained to distinguish between normal and
abnormal heart sounds, classify different types of murmurs, and assist clinicians in making more accu-
rate and timely diagnoses. Beyond comparative effectiveness, this machine learning investigation lays the
groundwork for future advancements in pediatric heart sound analysis, including medical training and
the development of stethoscopes with sound classification capabilities.

The major contribution of this work is twofold. First, we demonstrate the importance and effect of pre-
processing on eventual model performance. By exploring various sound preprocessing techniques and
medical literature, we showcase performance improvements on a model-by-model basis. In doing so, we
show that, especially with this small dataset, employing the right preprocessing techniques such as the
identification and segmentation of the S1 and S2 heart sounds, noise reduction and MFCC conversion en-
ables simpler models to perform as effectively as much more complex machine learning models like neural
networks, which are commonly used in existing research. Furthermore, the use of simpler models like
Random Forest not only matches the performance of complex neural networks but also offers significant
advantages in terms of scalability and ease of deployment. These attributes make simpler models highly
suitable for implementation in diverse healthcare settings, including hospitals with limited computational
resources, and for integration into portable devices such as wearables, enhancing their practical utility in
real-time health monitoring and diagnostics.

Second, we introduce a potential workflow for community healthcare workers to aid in accessing the
murmurs of children in remote areas using a stethoscope. Though not perfect, we hope the introduced
interface represents a first step in assisting healthcare workers to more reliably screen and triage the care
of children with heart murmurs. We achieve this by providing community healthcare workers with three
insights: we output a processed audio file containing only the segments of the audio signal where mur-
murs can occur, we provide a score indicating the likelihood that the sound contains a murmur, and if so,
we offer the clinical details that characterize the potential murmur detected.
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2 Related Work
Following the PRISMA guidelines, we conducted a systematic literature review focusing on the use of
machine learning in heart sound classification. Our search spanned several major databases, including
PubMed, Google Scholar, and Physionet challenges using key terms such as "heart sound classification",
"PCG analysis", "machine learning for cardiac auscultation", and "heart murmur detection". From an initial
pool of approximately 250 articles, careful screening based on titles and abstracts reduced the pool to 80
articles. This initial reduction was primarily guided by the relevance of the studies to machine learning
applications in heart sound classification, methodological rigor, and the date of publication, prioritizing
works that were no older than 10 years unless they were seminal articles. We also focused on filtering out
non-research articles, such as editorials and reviews, to ensure a focus on empirical research findings.

The second stage of reduction to 30 critically assessed articles involved a deeper evaluation of each study’s
contribution to the field, focusing on articles that introduced novel methodologies or significant advance-
ments in diagnostic accuracy. We also prioritized studies with clear clinical applications, those that pro-
vided comprehensive datasets, or demonstrated potential enhancements in clinical practice. Further con-
siderations included the quality and impact of the research, such as citation count and the journal’s impact
factor, to ensure inclusion of influential and high-quality studies that offer significant insights and impli-
cations for further research and practical applications.

Recent advancements in heart sound classification have demonstrated significant progress, primarily driven
by contributions such as those from McDonald et al.[6], who developed a model combining recurrent neu-
ral networks with hidden semi-Markov models for effective murmur detection. Similarly, Lu et al.[7]
proposed a lightweight CNN combined with a random forest model, focusing on computational efficiency
for real-time processing in clinical settings. Additionally, Chang et al.[8] introduced a multi-task learn-
ing framework that leverages both time-domain and frequency-domain features to predict the presence
of murmurs and clinical outcomes, illustrating the potential of integrated learning systems to enhance
diagnostic processes.

Inspired by the Busono et al.[9] study, we recognized the importance of medically informed data pre-
processing and segmentation. Busono’s work, which highlighted the challenges of digital auscultation
and the necessity for precise feature extraction to classify heart sounds accurately, led us to refine our
approach to audio data preprocessing. By adopting their insights on how to effectively isolate heart sound
components and emphasize the regions most likely to contain murmurs, we enhanced our segmentation
process to ensure that our models learn from the most clinically relevant and high-quality data sections.
This has significantly increased the detection accuracy of our models, particularly in distinguishing be-
tween ’Murmur Audible’ and ’Murmur Not Audible’ categories.

Building on these insights, our research addresses several critical gaps. Inspired by the robust feature
extraction and model interpretability in McDonald et al.’s work, we have developed streamlined compu-
tational models that adapt more readily to diverse clinical settings without sacrificing accuracy. From Lu
et al., we derived the value of creating lightweight models, leading us to innovate efficient preprocess-
ing techniques to ensure high-quality data inputs from varied recording conditions, addressing issues of
recording quality variance and inconsistent labels.

By integrating these advanced techniques, our study builds a model that significantly improves upon the
accuracy and utility of existing diagnostic tools for cardiac auscultation, providing more reliable, accurate,
and clinically useful tools that can ultimately lead to better patient outcomes.

3 Methods

3.1 Our Approach
This study adopts a comparative approach to evaluate the performance of traditional machine learning
models and deep learning architectures in the classification of heart sounds from phonocardiogram (PCG)
recordings. Initially, we plan to apply classical signal processing techniques, including Fourier analysis,
wavelet transform, and Mel-frequency cepstral coefficients (MFCCs), to extract salient features that cap-
ture the spectral and temporal characteristics of PCG signals. These features will then be utilized as inputs
for various machine learning classifiers, such as Support Vector Machines (SVMs), Random Forests, K-
Nearest Neighbors (KNN), Decision Trees, Logistic Regression, and Gaussian Naive Bayes. In parallel, we
will explore deep learning models, specifically Convolutional Neural Networks (CNNs), to identify spatial
and temporal patterns within the heart sounds.
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3.2 Dataset Introduction
The dataset used is described in the paper The CirCor DigiScope Dataset: FromMurmur Detection to Murmur
Classification and made freely available on PhysioNet [5]. It comprises 5230 unique heart sound record-
ings, derived from the four primary auscultation sites (PV, AV, TV, MV) of 1568 subjects aged 0 to 21 years
(average age 6.1 ± 4.3 years), with durations ranging from 4.8 to 80.4 seconds (average duration 22.9 ±
7.4 seconds), summing up to over 33.5 hours of audio data. This dataset includes three main target vari-
ables: presence of a murmur [Absent, Present, Unknown], whether or not a murmur is audible at a specific
recording location [AV, MV, PV, TV], and the outcome after expert consultation [Normal, Abnormal].

The data is organized into four primary types of files for each subject:
• Wave Recording Files (.wav): Binary files containing heart sound data from various auscultation

locations.
• Header Files (.hea): Text files providing metadata about the .wav files in standard WFDB format.
• Segmentation Data Files (.tsv): Text files with segmentation information marking the start and

end points of the fundamental heart sounds S1 and S2, for each auscultation location.
• Subject Description Files (.txt): Text files offering detailed demographic data (e.g., weight, height,

sex, age group, pregnancy status) and descriptions of murmur events for each subject.
The filename is systematic, reflecting the subject ID and auscultation location, followed by an integer in-
dex for multiple recordings at the same location (e.g., ABCDE_XY.wav where ABCDE is the subject identifier
and XY corresponds to specific auscultation points such as PV, TV, AV, MV, Phc).

Murmurs are meticulously classified based on timing, shape, pitch, quality, and grade, providing a gran-
ular view of heart sound anomalies. These classifications, along with the precise segmentation of heart
sounds into systolic and diastolic periods as delineated in the .tsv files, aid in the detailed analysis of these
audio recordings. Each .tsv file tags key periods in the sound files that are significant for clinical analysis,
enhancing the dataset’s utility for automated and detailed heart sound classification.

Figure 1 presents a summary of murmur occurrences among the patients whose sound recordings were
available, illustrating the significant skew toward the absence of murmurs within the dataset.

74%

19%

7%

Absent
Present
Unknown

Figure 1: Distribution of Murmur Categories Among Patients in the Training Dataset. The total number of
patients in the Training Dataset is 942

Upon further examination, we observe that a significant portion of cases initially identified as absent of
murmur ultimately yielded abnormal conclusions (37.8% within the absent group), shown in Table 1. This
stark discrepancy influenced our decision to define the target variable for this study more definitively, fo-
cusing on whether a murmur was audibly detected by an expert at specific recording locations [AV, MV,
PV, TV].

Moreover, when examining the sound files in ".wav" format within the database, we noticed that not all
patients have recordings from all different locations. As shown in Table 2, variations in the number of
recording types are evident. In Table 3 we indicated the number of recordings in the training, validation,
and test sets, after removing duplicates.
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Murmur Normal Abnormal
Absent 432 263
Present 29 150
Unknown 25 43

Table 1: Presence of Murmurs per Clinical Expert Diagnosis (Ground Truth of Outcome)

Category Number of Recordings Percentage
PV 766 24.23%
TV 732 23.14%
AV 800 25.30%
MV 861 27.26%
Phc 4 0.13%
Total 3163 100.00%

Table 2: Distribution of Auscultation Locations in the Training Data Heart Sound Recordings

Dataset Number of Unique Recordings Percentage of Total
Training 3141 60%
Validation 480 10%
Test Set 1609 30%
Total 5230 100%

Table 3: Distribution of Unique Recordings Across the Training, Validation, and Test Sets

Figure 2 illustrates the distribution of the murmur audible locations per recording location for the train-
ing, validation, and test sets. For the training dataset, we investigated the locations where murmurs were
detected, and the findings are presented in Figure 3. As anticipated, murmurs can manifest in multiple
locations simultaneously. Notably, the most audible locations include PV, TV, and MV.

Upon further stratifying the data into distinct age groups, it becomes apparent that a majority of pa-
tients fall into the "Child" category. Additionally, it is noteworthy that over one-third of the cases where
murmurs were initially absent were subsequently labeled as abnormal. This observation is illustrated in
Table 4. Additional analysis revealed that the predominant type of murmur observed is Systolic Murmur,

Age Group Outcome Murmur Absent Murmur Present Murmur Unknown Total
Unknown Normal 56 3 2 61

Abnormal 11 2 0 13
Neonate Normal 3 0 0 3

Abnormal 1 1 1 3
Infant Normal 37 4 6 47

Abnormal 39 21 19 79
Child Normal 305 22 16 343

Abnormal 190 110 21 321
Adolescent Normal 31 0 1 32

Abnormal 22 16 2 40
Total 695 179 68 942

Table 4: Training Data: Distribution by Age Group, Outcome, and Presence of Murmur

as depicted in Table 5. This finding is consistent with established medical knowledge, as systolic murmurs
are typically more prevalent in both pediatric and adult populations [10]. We processed the header files

Murmur Type Number of Recordings
Systolic 178
Diastolic 5

Table 5: Training Data: Summary of Systolic and Diastolic Murmur Recordings

to extract metadata from each audio file. This metadata includes information about patient demographics
and murmur characteristics. All metadata is provided in Table 6. In addition to the metadata, the dataset
owners utilized an advanced model to tag specific periods within the audio recordings of heart sounds.
These tags are stored in a .tsv file format for every audio file is illustrated in Table 7. The .tsv files delineate

4



Figure 2: Distribution of murmur audible per recording location on the training, validation, and test data

Feature Category Features
Patient Info Patient ID, Campaign, Additional ID
Recording Info Recording Locations, Frequency (Hz)
Patient Demographics Age, Sex, Height, Weight, Pregnancy Status
Murmur Characteristics Murmur (Present/Absent), Murmur Audible, Most Audible Location
Systolic Murmur Details Systolic Murmur Timing, Systolic Murmur Shape,

Systolic Murmur Grading, Systolic Murmur Pitch,
Systolic Murmur Quality

Diastolic Murmur Details Diastolic Murmur Timing, Diastolic MurmurShape,
Diastolic Murmur Grading, Diastolic Murmur Pitch,
Diastolic Murmur Quality

Expert Diagnosis Outcome

Table 6: Metadata Extracted and Compiled from Audio Files

distinct segments in each recording as follows:

• Period 0: Noise — ambient or non-cardiac sounds.
• Period 1: The S1 Region — corresponds to the first heart sound.
• Period 2: The Systolic Region — crucial for identifying potential systolic murmurs.
• Period 3: The S2 Region — corresponds to the second heart sound.
• Period 4: The Diastolic Region — another key period for detecting potential diastolic murmurs.

3.3 Experimentation Plan
In this initial part of our research, we aim to classify murmurs based on the information provided, in-
cluding audio recordings and metadata. As observed in Table 5, diastolic murmurs are scarcely present.
Consequently, we have decided to focus this research solely on systolic murmurs. Figure 9 illustrates how
we set up our training, validation, and testing phases. Below, we will discuss each step in greater detail.
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Figure 3: Summary of Murmur Locations and Most Audible Locations in the Training Dataset

Begin (s) End (s) Period
0.0000 0.6780 0
0.6780 0.8202 4
0.8202 0.9602 1
0.9602 1.0802 2
1.0802 1.1802 3
1.1802 1.4402 4

... ... ...

Table 7: Sample Data from TSV File

In the development of our methodology for classifying heart murmurs using phonocardiograms, several
advanced techniques were explored but ultimately not adopted due to various challenges in achieving
superior results. Below, we provide a detailed account of these explorations, the rationale for their initial
consideration, and the reasons for their eventual inclusion or exclusion from the final methodology that
was implemented.

Inputs/Outputs
In the training and selection phase of this study, several machine learning models were carefully tuned
using both the training and validation datasets, while the test dataset was preserved for final evaluation.
Initially, the training set comprised 60% of the data, and the validation set held 10%.

1. Splitting
The segments between the S1 and S2 heart sounds, where murmurs are predominantly present, were
isolated for detailed analysis. Through empirical testing, different audio segment lengths were tested,
including a segment length of 392 milliseconds which captured the critical period between the S1 and S2
heart sounds (e.g., where murmurs, if present, will occur) for all patients. To avoid inadvertently exclud-
ing any murmurs or merging them with other noise in this period, a small amount of padding was added
around these segments. The audio files were processed to retain only segments from Period 2, where sys-
tolic murmurs are most likely to occur. These segments were also padded to standardize the length across
all samples, ensuring consistency in analysis and modeling. An example of a final preprocessed audio file
can be seen in Figure 4.

Figure 4: Segmentation is done based on the pre-tagged period 2 locations in the .tsv files
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2. Noise Reduction
In clinical diagnostics, four main heart sounds — S1, S2, S3, and S4 — were distinguished through this
methodology. S1, registering between 10 and 200 Hz, and S2, between 20 and 250 Hz, were essential
markers for detecting heart murmurs. S3 and S4, present in lower frequencies, indicated potential heart
failure or abnormal rhythms. The noise reduction preprocessing involved applying a low pass filter with a
threshold of 500Hz, which helped attenuate high-frequency noise components that are typically not rele-
vant to the heart sound analysis. Additionally, sounds below 20 decibels were set to zero. These thresholds
were determined empirically to concentrate the analysis on the most significant audio components of the
heart sounds. This approach not only reduced the processing time but also enhanced the accuracy of the
analysis in subsequent stages.

3. Train Test Validation Split
In the training and selection phase of this study, several machine learning models were carefully tuned
using both the training and validation datasets, while the test dataset was preserved for final evalua-
tion. Initially, the training set comprised 60% of the data, and the validation set held 10%. To improve
hyper-parameter optimization, iterative cross-validation was applied using the validation set alone. This
is displayed in Figure 9.

4. Feature Extraction
Initially, our work incorporated feature engineering techniques like Mel-spectrograms and wavelet fea-
tures. Mel-spectrograms were pivotal for visualizing the spectral patterns over time, capturing the textural
nuances of heart sounds which are essential for identifying murmurs. Wavelet features were employed to
grasp both frequency and location information, which is crucial for the analysis of non-stationary signals
like heart sounds. However, despite their theoretical advantages, these features alone did not sufficiently
enhance the model’s performance in preliminary tests.

In parallel, we delved into more advanced signal analysis techniques such as auto-correlation to detect
repeating patterns and periodic behavior within the audio data, indicative of regular heart rhythms and
potential murmurs. Auto-correlation, supplemented with band-pass filtering to minimize noise interfer-
ence, aimed to isolate significant patterns and identify periodic events like heartbeats and murmurs. This
approach, while sound in theory, faced practical challenges in effectively isolating the nuanced sounds of
heart murmurs from other cardiac noises in the highly variable clinical data.

Therefore, in terms of the feature extraction phase of our project, we settled on using only Mel Frequency
Cepstral Coefficients (MFCCs) to analyze the audio data from heart sounds, focusing exclusively on the
Period 2 segments—identified as the systolic region. This selection is rooted in medical literature, as these
segments are where potential systolic murmurs are most likely to be present [11]. Murmurs differ from
normal heart sounds in their softness and frequency profile, presenting a significant challenge for acoustic
analysis. These variations are not only subtle but also contaminated with background noise and arti-
facts that further obscure the murmurs. Additionally, murmurs vary acoustically depending on their type,
location, and severity; for example, systolic and diastolic murmurs exhibit different spectral signatures.
This variability necessitates sophisticated feature extraction and machine learning techniques for effective
identification and classification of heart murmurs.

Figure 5: MFCC features extracted from a heart sound recording audio file at the atrial valve (AV) recording
location for both the raw heart sound audio file and its corresponding segmented heart sound audio file.

By employing 40 MFCC features, we effectively capture essential auditory characteristics that mimic hu-
man perception, such as loudness and pitch, within this critical period. Figure 5 and Figure 6 provide a
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Figure 6: Pair-plot showing 7 of the 40 MFCC features extracted from all heart sound segmented audio
recordings in the training dataset.

detailed visual representation of the Mel Frequency Cepstral Coefficients (MFCCs) utilized in our analy-
sis of heart sounds. Figure 5 displays the MFCC features extracted from both raw and segmented heart
sound recordings at the atrial valve (AV) location, illustrating the transformation of audio data through
preprocessing. Meanwhile, Figure 6 presents a pair-plot of seven selected MFCC features from the training
dataset, showcasing their interactions and the distinctions between murmurs and normal heart sounds.
These figures underscore the critical role of MFCCs in enhancing our understanding and detection of heart
murmurs. This targeted approach allowed our machine learning models to better capture the nuances of
systolic heart sounds, facilitating a more precise analysis and identification of the murmur conditions. It is
also worth mentioning that in our pursuit to optimize the performance of the machine learning models for
heart murmur detection, a critical observation emerged regarding the variability in model efficacy when
training and evaluating models based on specific recording locations versus aggregating data across all
locations. This distinction became a focal point in our study, as it significantly influenced the detection
accuracy and reliability of the models.

During the initial phases of our research, models were trained on the entirety of the dataset without
distinction between the different recording locations (PV, AV, TV, MV). This approach, while holistic, did
not account for the unique acoustic signatures that murmurs might exhibit depending on where on the
chest the recording was taken. Heart murmurs can have distinct sounds based on their anatomical origin,
influenced by factors such as the proximity to the heart valves and the direction of blood flow. Recognizing
this, we shifted our strategy to develop location-specific models. By segregating the data according to the
recording site and tailoring the models to these subsets, we aimed to capture the unique characteristics of
the heart sounds from each location. This methodological refinement led to a noticeable improvement in
model performance, and therefore, feature extraction was segregated per recording location.

5. Scaling
After extracting the MFCC features from the Period 2 segments, we applied scaling to standardize the
data, normalizing each feature to have a mean of 0 and a standard deviation of 1, ensuring uniformity in
the data for optimal model performance.

6. Metadata Location Split
To further refine our analysis and enhance the model’s accuracy, we segmented the training dataset based
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on the measurement locations indicated in the metadata—Aortic Valve (AV), Mitral Valve (MV), Pulmonic
Valve (PV), and Tricuspid Valve (TV). This was an empirical decision detailed in section 4. Each location
represents a specific area where heart sounds are recorded. In our dataset, we have roughly the same
number of audio files for each measurement location. This segmentation allows for more precise model
training and higher diagnostic accuracy across different heart valve areas.

7. Training and Validating ML models
Our methodology, as outlined in section 3.1, involves a dual-path exploration of both traditional machine
learning models and more complex deep learning frameworks. To reiterate, each model has been selected
based on a comprehensive review of existing literature and the promising results reported in related works
(section 2).

Hyperparameter tuning was performed exclusively on the training and validation datasets, with differ-
ent models optimized for their distinct architectures and parameters. During the optimization process,
cross-validation was crucial in finding the best hyperparameters for each classifier. For instance, grid
searches were employed to explore optimal combinations for Random Forests (number of estimators),
Support Vector Machines (kernels and regularization), K-Nearest Neighbors (number of neighbors), and
Logistic Regression (penalty parameters). Iterative cross-validation on the validation set alone ensured
the models were not over-fitting on unseen data.

The Random Forest classifier was configured with 100 trees, striking a balance between computational
cost and predictive performance, with the ’sqrt’ option for maximum features to promote diversity among
the trees and mitigate over-fitting. The Support Vector Machine (SVM) utilized a linear kernel due to its
effectiveness with high-dimensional data, paired with a regularization parameter (C) of 1.0 to adequately
balance margin maximization and error minimization. For the K-Nearest Neighbors (KNN) model, we
chose 5 neighbors to achieve a beneficial mix of locality and noise reduction, employing the Euclidean
distance metric for its simplicity and effectiveness in high-dimensional space. Decision Trees were limited
to a maximum depth of 10 to prevent over-fitting, using Gini impurity as the criterion for its robustness in
handling multi-class classification problems. Logistic Regression was implemented with a regularization
parameter (C) of 1.0 to optimize the balance between fitting and over-fitting, utilizing the ’lbfgs’ solver for
its efficiency, particularly in smaller datasets. Lastly, the Naive Bayes (GaussianNB) model was fine-tuned
with a variance smoothing parameter set to 1e-9, ensuring numerical stability in scenarios where feature
variances are minimal, thus safeguarding the model’s performance and stability.

Extensive experiments were also performed with various CNN architectures incorporating multiple con-
volutional and pooling layers to leverage their potential in capturing spatial hierarchies in spectrogram
data. Techniques such as dropout and L2 regularization were integrated to mitigate overfitting concerns,
especially given the limited size and imbalanced nature of our dataset. Despite their sophistication, CNN
models required extensive computational resources and tuning, and they did not yield the expected im-
provement over traditional machine learning models when evaluated strictly on heart sound classification
tasks. This was partly because the added model complexity did not translate into better generalization
across the diverse acoustic profiles present in the dataset.

Similarly, to further refine the ability to handle outliers (e.g., murmurs) and enhance a model’s atten-
tion on relevant patterns indicative of murmurs, anomaly detection techniques such as Isolation Forest
and One-Class SVM were explored. By focusing on ’normal’ data during training (which consists of 80%
of the available data), the model could better learn the characteristic features of typical heart sounds and
murmurs, thereby improving its generalization performance on unseen data. Despite their potential bene-
fits, the techniques of anomaly detection, majority voting, and handling class imbalance through synthetic
data augmentation and class weighting were ultimately not incorporated into the final methodology as
we began to notice the complexity and subtle distinctions in heart murmur detection required a simpler
and more transparent approach. Therefore, we opted to use the following six traditional machine-learning
models with carefully tuned hyperparameters.

9. Model Evaluation
We primarily focused on metrics such as precision, recall (sensitivity), F1-score, and accuracy, which are
critical for assessing the performance of models in the context of medical diagnostics. Recall was partic-
ularly emphasized, as minimizing false negatives is paramount in clinical settings to avoid missing any
potential diagnoses of heart murmurs. Each model’s performance was rigorously tested using a dedicated
test set, which constituted 30% of the entire dataset, ensuring that the models were evaluated on unseen
data. Additionally, the Receiver Operating Characteristic (ROC) curves and the corresponding Area Un-
der the Curve (AUC) were computed for each model across all recording locations (PV, AV, TV, MV). To
address potential class imbalance, which is common in medical datasets, we utilized stratified sampling
during dataset splitting.
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10. Model Interpretation
Interpreting machine learning models, especially in a clinical context, involves understanding how model
decisions are made, which can be challenging with complex models. For the traditional machine learning
models employed (e.g., Random Forest, SVM, Decision Tree, KNN, Logistic Regression, and Naive Bayes),
we leveraged several techniques to enhance interpretability. For models like Random Forest and Decision
Trees, we extracted feature importance scores, which indicate how valuable each feature is in making
predictions. This helps in understanding which characteristics of the heart sounds are most indicative of
murmurs. For simpler models such as Logistic Regression and SVM with a linear kernel, we examined the
decision boundaries to understand how different features influence the prediction outcome. This can be
particularly insightful when the models are linear or near-linear. For all models, confusion matrices were
used to visually assess model performance concerning false positives, false negatives, true positives, and
true negatives (these are summarized in tables to save space). This allows clinicians to understand the
types of errors the models are making and consider these in the context of clinical decision-making.

11. Novelty
Our project aims to demonstrate a significant advancement in heart sound analysis by showing that simpler
machine learning models using Mel-frequency cepstral coefficients (MFCCs) with meticulous preprocess-
ing can outperform more complex deep learning architectures. For healthcare professionals, the ability to
comprehend how diagnostic predictions are made is essential for trust and acceptance, facilitating easier
integration into clinical workflows and supporting more informed decision-making. As part of the novelty
of this research, we focused on making heart sound classification more explainable and potentially ap-
plicable in the real world. We developed a Streamlit interface to integrate our best-performing model to
classify murmur characteristics. Healthcare workers can upload audio files into the interface. The audio
data undergoes preprocessing steps such as segmenting, noise reduction, and feature extraction, precisely
those used in model training. The processed audio is analyzed to detect murmurs (outputting the result)
and uses SHAP values to identify which MFCC features were most influential. If a murmur is detected,
the system analyzes specific murmur characteristics using the secondary model. These characteristics are
displayed to provide detailed insights, enhancing clinical decision-making. The overall process flow is il-
lustrated in Figure 7. The significance and implications of these capabilities will be discussed further in
the sections 4 and 5 of our study.

In summary, while our initial experiments with complex features, advanced signal processing, and neu-
ral networks provided valuable insights, they underscored the challenges of working with highly variable
and noisy clinical data. The streamlined approach described in our final methodology, which emphasizes
precise audio segmentation and the use of simpler machine learning models, ultimately proved to be the
most effective in enhancing the detection of heart murmurs, for robust clinical applications.

Figure 7: Real World Application: Community Health Care Worker Streamlit Backend Flow
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4 Results

4.1 Experimental Results
Table 8 presents the classification results of various models before segmentation and ignoring location
data. The performance of each model is evaluated by metrics such as weighted F1-Score, True Positives
(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN).

Model F1-Score TP TN FP FN
Random Forest 81.03% 4 416 1 65

SVM 79.25% 0 417 0 69
KNN 81.08% 13 391 26 56

Decision Tree 76.65% 16 353 64 53
Logistic Regression 84.13% 13 412 5 56

Naive Bayes 77.41% 41 320 97 28

Table 8: Performance without preprocessing and segmentation

Segmenting the data by location shows subtle improvements in model performance as noted in the ad-
justed, weighted F1-Scores and reduction in False Negatives in Table 9.

Model F1-Score TP TN FP FN
Random Forest 82.04% 7 414 3 62

SVM 82.44% 8 415 2 61
KNN 81.23% 11 397 20 58

Decision Tree 78.41% 21 357 60 48
Logistic Regression 83.43% 12 410 7 57

Naive Bayes 76.14% 29 328 89 40

Table 9: Performance without preprocessing and with segmentation

By preprocessing we see improvements across models in terms of the weighted F1-Score increase and re-
duction in False Negatives displayed in Table 10.

Location F1-Score TP TN FP FN
PV 86.24% 13 88 11 6
AV 90.30% 13 101 9 4
TV 80.14% 11 76 22 4
MV 82.02% 13 89 21 5

Table 10: Performance with preprocessing and with segmentation

Final improvements can be made by focusing on optimizing for recall of the "murmur prediction" class.
Figure 8 displays the relationship between Target Recall and Specificity as a function of different classi-
fication thresholds for our best-performing RF model. It highlights how the Target Recall (True Positive
Rate) decreases as the threshold increases from 0.05 to 0.30, indicating a decline in the model’s ability
to correctly identify positive cases as the threshold becomes more stringent. Conversely, the Specificity
(True Negative Rate over Total Positives), represented by the green dashed line, increases with the thresh-
old, indicating an improvement in the model’s ability to correctly identify negative cases as false alarms
are reduced. Optimizing for high recall (sensitivity) is crucial, particularly when the cost of missing a
true positive could have significant health repercussions. Setting the classification threshold at 0.15 is a
strategic choice aimed at balancing the need for high recall, ensuring most positive cases are captured
while maintaining a reasonable level of specificity to avoid too many false positives. Setting the threshold
to 0.15 results in a further reduction in False Negatives and improvements in F1-Scores across different
locations, suggesting a tailored approach per location significantly enhances model performance indicated
in Table 11.

For the final evaluation, the training and validation datasets were merged for the models to train on 75%
of the available data (refer to Table 3 and Figure 9) and evaluate the models on 25% of the available data.
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Figure 8: Trade off between recall and specificity for different classification thresholds for the best per-
forming RF model

Model Avg F1-Score Increase Avg FN Reduction
Random Forest 7.62% 7.25

SVM 6.87% 6.25
KNN 12.98% 10.00

Decision Tree 6.23% 2.75
Logistic Regression 6.36% 4.75

Naive Bayes 14.86% 11.75

Table 11: Performance on validation set by lowering the murmur classification to a 0.15 threshold

From the analysis of various machine learning classifiers applied to different heart sound recording loca-
tions (PV, AV, TV, and MV), each model’s performance was evaluated based on precision, recall, F1-score,
and the count of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).
These metrics help identify the most reliable classifiers for clinical application, prioritizing those with min-
imal FN rates to ensure all potential murmurs are examined. Table 12 through Table 15 synthesize the
performance metrics of various machine learning classifiers across four distinct heart sound recording lo-
cations — PV, AV, TV, and MV on the test set. Additionally, below each table, the AUC score for the two
best-performing models per recording location are shown in Figure 10 through Figure 13. The AUC score
is particularly useful in this context because it is not affected by the proportion of patients with or without
the condition (class imbalance), which is common in medical datasets including the one concerning this
report as shown in Figure 1. This property allows for a fair comparison of model performance in datasets
where one class might be significantly less common than the other.

In the PV location (Table 12), the Naive Bayes classifier excels with a balanced performance, notably
in detecting murmurs while minimizing false alarms. Although the Random Forest model has lower pre-
cision, its high recall rate for "Murmur Audible" makes it valuable for initial screenings where capturing
most potential cases is crucial. At the AV location (Table 13), both SVM and Logistic Regression demon-
strate exceptional performance, effectively balancing sensitivity and specificity in detecting both murmur
and non-murmur cases. These models are particularly adept at minimizing false negatives, ensuring that
murmurs are reliably identified. In the TV location (Table 14), Naive Bayes and Logistic Regression main-
tain strong performance, with Naive Bayes showing high specificity and recall for "Murmur Not Audible,"
indicating its effectiveness in such settings. The MV location (Table 15) also sees these models perform
well, especially in reducing false negatives, a crucial factor in clinical diagnostics. Their consistently high
recall rates underline their suitability in environments where missing a condition could pose significant
patient risks.

The classification outcomes at each recording location emphasize the critical need to minimize false neg-
atives in clinical diagnostics to prevent missed murmurs and the subsequent risk of severe cardiac condi-
tions. Although a false positive can be reevaluated, a false negative could lead to undiagnosed, progressing
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Figure 9: Machine learning pipeline with the training and validation dataset combined.

diseases. For instance, while the Random Forest model at the PV location doesn’t achieve the highest pre-
cision, its significant recall (86.67% with 65 true positives and only 10 false negatives) proves its efficacy
in capturing murmurs that might be missed by other models, making it ideal for preliminary screenings.

Conversely, in situations requiring high sensitivity and specificity—where each false alarm could lead
to unnecessary and costly interventions—models like SVM and Naive Bayes are preferable. These models
consistently perform well in both the AV and MV locations, making them suitable for comprehensive car-
diac assessments where the impact of false positives is also a concern. The results highlight that no single
model is universally superior across all locations; however, leveraging each model’s strengths based on
specific clinical needs and data characteristics can significantly enhance the reliability and effectiveness
of automated heart murmur detection systems, providing clinicians with tools that are finely tuned to the
diagnostic context.

Classifier Murmur Audible Murmur Not Audible TP TN FP FN
Precision Recall F1-Score Precision Recall F1-Score

Random Forest 43.05% 86.67% 57.52% 96.03% 73.78% 83.45% 65 242 86 10
SVM 49.09% 72.00% 58.38% 92.83% 82.93% 87.60% 54 272 56 21
KNN 36.91% 73.33% 49.11% 92.13% 71.34% 80.41% 55 234 94 20
Decision Tree 54.55% 56.00% 55.26% 89.88% 89.33% 89.60% 42 293 35 33
Logistic Regression 50.47% 72.00% 59.34% 92.91% 83.84% 88.14% 54 275 53 21
Naive Bayes 72.22% 69.33% 70.75% 93.05% 93.90% 93.47% 52 308 20 23

Table 12: Classification results for the PV location on the test set
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Figure 10: ROC curve for the top two models with the highest AUC score in the PV Location (Random
Forest and Naive Bayes)

Classifier Murmur Audible Murmur Not Audible TP TN FP FN
Precision Recall F1-Score Precision Recall F1-Score

Random Forest 44.54% 75.71% 56.08% 94.46% 81.46% 87.48% 53 290 66 17
SVM 50.00% 78.57% 61.11% 95.25% 84.55% 89.58% 55 301 55 15
KNN 26.23% 68.57% 37.94% 90.95% 62.08% 73.79% 48 221 135 22
Decision Tree 42.62% 37.14% 39.69% 87.95% 90.17% 89.04% 26 321 35 44
Logistic Regression 49.54% 77.14% 60.34% 94.95% 84.55% 89.45% 54 301 55 16
Naive Bayes 67.14% 67.14% 67.14% 93.54% 93.54% 93.54% 47 333 23 23

Table 13: Classification results for the AV location on the test set

Figure 11: ROC curve for the top two models with the highest AUC score in the AV Location (Logistic
Regression and SVM)

Classifier Murmur Audible Murmur Not Audible TP TN FP FN
Precision Recall F1-Score Precision Recall F1-Score

Random Forest 44.35% 70.83% 54.55% 91.70% 78.38% 84.52% 51 232 64 21
SVM 53.54% 73.61% 61.99% 92.94% 84.46% 88.50% 53 250 46 19
KNN 34.87% 73.61% 47.32% 91.20% 66.55% 76.95% 53 197 99 19
Decision Tree 58.90% 59.72% 59.31% 90.17% 89.86% 90.02% 43 266 30 29
Logistic Regression 54.08% 73.61% 62.35% 92.96% 84.80% 88.69% 53 251 45 19
Naive Bayes 69.23% 62.50% 65.69% 91.09% 93.24% 92.15% 45 276 20 27

Table 14: Classification results for the TV location on the test set
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Figure 12: ROC curve for the top two models with the highest AUC score in the TV Location (SVM and
Logistic Regression)

Classifier Murmur Audible Murmur Not Audible TP TN FP FN
Precision Recall F1-Score Precision Recall F1-Score

Random Forest 34.78% 80.00% 48.48% 94.68% 70.34% 80.71% 56 249 105 14
SVM 44.74% 72.86% 55.43% 93.87% 82.20% 87.65% 51 291 63 19
KNN 26.42% 72.86% 38.78% 91.77% 59.89% 72.48% 51 212 142 19
Decision Tree 42.31% 47.14% 44.59% 89.31% 87.29% 88.29% 33 309 45 37
Logistic Regression 47.27% 74.29% 57.78% 94.27% 83.62% 88.62% 52 296 58 18
Naive Bayes 58.75% 67.14% 62.67% 93.31% 90.68% 91.98% 47 321 33 23

Table 15: Classification results for the MV location on the test set

Figure 13: ROC curve for the top two models with the highest AUC score in the MV Location (Logistic
Regression and SVM)

4.2 Application Results
As mentioned in section 3.3, we explored how to make heart sound classification more interpretative and
how our results can be applied in real life by developing a front-end that utilizes inference from two trained
machine learning models. Here is an example workflow designed to potentially assist users in identifying
heart murmurs:

Ana, a community health worker in a remote area of Brazil, conducts daily examinations of children using
only a digital stethoscope. Diagnosing heart murmurs from sound recordings poses a significant challenge,
even for experienced cardiologists. Given her limited resources, Ana must carefully decide which children
to send on a long journey to a distant hospital for further treatment.

To aid Ana, our model processes the audio files from the digital stethoscope with noise reduction, audio
enhancements, and by stripping out segments where a murmur cannot occur. This preprocessing allows
her to listen more attentively to the exact timings at which a murmur might occur, simplifying the complex
task of classification. What this looks like in the front-end is shown in Figure 14. Once a potential murmur
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is detected, the model delivers a verdict with SHAP explanations on why it reached that conclusion, as
shown in Figure 15. If a murmur is confirmed, the model provides additional details on the characteristics
of the murmur observed, helping Ana navigate its complex features. An example is shown in Figure 16.
This information assists her in prioritizing which children might have the most serious underlying condi-
tions, ensuring that only those most likely to need further medical intervention undertake the long and
costly journey for a more thorough examination. This thoughtful application of machine learning thus
aims to make Ana’s critical judgment calls both more informed and more efficient.

Figure 14: Uploading the .wav file and metadata results in a processed audio file that only contains sounds
where a potential murmur can occur

Figure 15: The model provides feedback with SHAP values on whether it thinks it is likely this recording
contains a murmur
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Figure 16: If a murmur is detected, it gives detailed characteristics of the murmur detected

5 Discussion

5.1 Overview
In this study, we have explored various approaches to classify heart sounds and detect murmurs using ma-
chine learning techniques. Our findings demonstrate the potential of using simpler models with carefully
engineered features, such as segmentation techniques and Mel Frequency Cepstral Coefficients (MFCCs),
to achieve performance comparable to complex deep learning architectures. Moreover, we have devel-
oped a Streamlit interface that showcases how our models can be integrated into a user-friendly tool to
assist community healthcare workers in assessing heart murmurs in resource-constrained settings. This
section discusses the main contributions, sub-optimal approaches, real-world applications, methodological
nuances, ethical considerations, and future directions of our research.

5.2 Advancing Heart Sound Classification with Novel Approaches
Our work makes significant contributions to the field of heart sound classification by demonstrating the
effectiveness of using MFCCs with simpler machine learning models. This approach offers several advan-
tages over complex deep learning architectures, including reduced computational requirements, improved
interpretability, and increased accessibility for medical professionals. By leveraging MFCCs to capture the
timbral and textural qualities of heart sounds, we have shown that simpler models can achieve perfor-
mance levels comparable to state-of-the-art deep learning techniques. For example, in the Pulmonic Valve
(PV) location, the Random Forest model achieved a recall of 86.67% for ’Murmur Audible’ classifications
and a precision of 96.03% for ’Murmur Not Audible’ classifications, underscoring the capability of these
models to provide reliable diagnostic insights. Similarly, in the Mitral Valve (MV) location, the Random
Forest model demonstrated a recall of 80.00% for detecting audible murmurs, which is crucial for ensuring
that fewer cases of potential abnormalities go unnoticed. This finding has important implications for the
broader adoption of heart sound analysis technologies, as it lowers the barriers to entry and enables the
deployment of these tools in resource-limited settings, such as remote clinics or on mobile devices like
smartphones and digital stethoscopes.

5.3 Lessons from Sub-optimal Approaches
Throughout our research, we explored several techniques that ultimately did not yield optimal results.
These suboptimal approaches, however, provide valuable insights and lessons for future research in heart
sound classification. For instance, our experiments with wavelet transforms highlighted the importance of
balancing feature richness with model interpretability. Similarly, the use of Mel spectrograms as inputs for
CNNs underscored the significance of retaining critical time-domain information when analyzing heart
sounds. Our attempts at segmenting audio files based on individual heartbeats and applying anomaly
detection techniques further emphasized the challenges associated with the inconsistent occurrence of
murmurs and the nuanced nature of distinguishing between normal and abnormal heart sounds. By shar-
ing these findings, we aim to guide future researchers in their choice of techniques and help them avoid
potential pitfalls.

5.4 Empowering Community Healthcare Workers
One of the key contributions of our work is the development of a Streamlit interface that demonstrates how
our heart sound classification models can be integrated into a user-friendly tool for community healthcare
workers. This interface allows users to upload heart sound recordings and receive immediate feedback
on the likelihood of a murmur being present, along with detailed characteristics of the detected murmur.
By providing a processed audio file that focuses on the segments where murmurs are most likely to occur,
our tool enables healthcare workers to make more informed decisions about referring patients for further
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evaluation. The potential benefits of such a system are particularly significant in resource-constrained
environments, where access to specialized medical expertise may be limited. However, it is crucial to
recognize that this is just the first step in a longer journey to ensure the effectiveness and reliability of our
models in real-world settings. Comprehensive testing in diverse environments, further refinement of the
models, and the development of targeted training programs for healthcare workers are essential to realize
the full potential of this technology in enhancing healthcare delivery in underprivileged areas.

5.5 Methodological Nuances
In our study, we made a strategic choice to adjust the classification threshold to 0.15 to optimize for high
recall (sensitivity). This decision was driven by the clinical need to minimize false negatives and ensure
that most positive cases are captured, even at the cost of a slightly reduced specificity. By prioritizing recall,
we aim to align our models with the real-world requirements of heart sound classification, where missing
a potentially abnormal case could have serious consequences for patient outcomes. This methodological
nuance highlights the importance of considering the specific context and objectives of the application when
designing and evaluating machine learning models in healthcare settings.

5.6 Ethical Considerations and Privacy Implications
The use of machine learning models in clinical settings raises important ethical considerations and privacy
implications that must be carefully addressed. Ensuring the reliability, fairness, and interpretability of our
models is of utmost importance to maintain trust and avoid potential harm arising from misclassification.
Regular validation and auditing of the models are necessary to identify and mitigate any biases or errors
that may arise over time. Moreover, the handling of sensitive patient data requires strict adherence to
relevant regulations and ethical guidelines. Robust data management practices, including anonymization
and secure storage, are essential to protect patient privacy and maintain confidentiality. As we move
towards the real-world deployment of our heart-sound classification tools, it is crucial to engage with
healthcare professionals, ethicists, and policymakers to develop appropriate governance frameworks and
ensure the responsible use of these technologies.

5.7 Future Directions and Collaborations
Our research lays the foundation for several exciting future directions in the field of heart sound classi-
fication. Firstly, we plan to focus on advanced audio preprocessing techniques and the expansion of our
datasets with diverse, well-labeled recordings. By collaborating with healthcare institutions and leverag-
ing standardized data collection protocols, we aim to improve the accuracy and reliability of our models
across a wide range of clinical settings. Secondly, we intend to explore sophisticated machine learning ar-
chitectures that integrate deep learning with traditional signal processing techniques. These hybridmodels
have the potential to enhance feature extraction capabilities while maintaining computational efficiency.
Additionally, we will investigate the use of unsupervised and semi-supervised learning methods to address
the challenge of limited labeled data in medical domains. Lastly, we will work closely with healthcare
professionals and technology experts to ensure the seamless integration of our heart sound classification
tools into existing clinical workflows. By assessing technical feasibility, navigating regulatory landscapes,
and developing user-friendly interfaces, we aim to create a technology that truly augments the capabilities
of medical professionals and improves patient care.

5.8 Conclusion
In conclusion, our research demonstrates the potential of using simpler machine learning models with
carefully engineered features, such as MFCCs, for heart sound classification and murmur detection. By
developing a user-friendly Streamlit interface, we have shown how these models can be integrated into
tools that empower community healthcare workers in resource-constrained settings. However, our work
also highlights the importance of considering methodological nuances, ethical implications, and the need
for comprehensive testing and refinement before deploying these tools in real-world clinical environments.
As we move forward, we remain committed to collaborating with healthcare professionals, researchers,
and technology experts to advance the field of heart sound classification and develop innovative solutions
that can transform the delivery of healthcare in underserved communities worldwide.
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