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Abstract

Major Depressive Disorder (MDD) is clinically heterogeneous, prompt-
ing efforts to uncover biologically defined subtypes that might inform
diagnosis and treatment. Recent large-scale proteomic analyses, includ-
ing those on UK Biobank (UKB) data, suggest that complex traits may
be better characterized as continuous gradients rather than discrete cate-
gories. Here, we investigate whether MDD-related proteomic variation
forms distinct clusters or lies along a continuum. Using data from over
53,000 UKB participants, we apply Improved Deep Embedded Cluster-
ing (IDEC) implemented in PyTorch to identify latent structures in 2,900
protein expression profiles per individual. Compared against baseline
methods (PCA-+k-means and UMAP+HDBSCAN), IDEC robustly uncovers
broad demographic signals, particularly those related to sex, yet reveals
no stable proteomic subtypes of depression across the full dataset, sex-
stratified subsets, or an MDD-enriched sample. Adjusting the number of
clusters, tuning model complexity, and focusing on more homogeneous
subgroups do not isolate distinct MDD-related clusters. Instead, MDD
prevalence and associated patterns remain diffusely distributed, suggest-
ing that depression’s proteomic architecture does not neatly partition into
categorical subtypes. These findings underscore the importance of embrac-
ing dimensional, gradient-based frameworks when probing the molecular
underpinnings of psychiatric disorders, potentially guiding more nuanced
approaches to biomarker discovery and personalized interventions.

1 Introduction

Major Depressive Disorder (MDD) is clinically heterogeneous, prompting extensive efforts
to identify biologically defined subtypes. Yet, systematic reviews report limited success in
finding replicable, discrete clusters, suggesting that depression-related biology may manifest
along continuous dimensions. Such gradient-based perspectives are increasingly promi-
nent in psychiatry, where dimensional models often capture subtle biomarker-symptom
relationships more effectively than categorical frameworks.

The UK Biobank (UKB) Plasma Proteomics dataset—over 53,000 participants with nearly
3,000 quantified proteins—offers a powerful setting to examine depression’s proteomic
architecture. Recent research using this dataset demonstrated that biological aging follows
continuous gradients Argentieri et al. (2024), raising the question of whether depression-
related signals similarly disperse across smooth landscapes.

Here, we employ three complementary clustering approaches: (1) Improved Deep Embed-
ded Clustering (IDEC), our primary method implemented in PyTorch Guo et al. (2017),
(2) Principal Component Analysis with k-means (PKM), and (3) UMAP with Hierarchical
Density-Based Clustering (UH). We examine the full cohort, a subset with in-patient clinical
diagnosis of MDD, and sex-stratified groups. Our results consistently show that proteomic
variation associated with depression does not yield stable, distinct clusters, instead revealing
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a gradient-based architecture that may better inform biomarker discovery and personalized
interventions.

2 Methods

2.1 Data and Preprocessing

The UK Biobank (UKB) Plasma Proteomics dataset comprises 53,018 participants with 2,917
quantified proteins per individual. Our analysis pipeline examined three cohorts: (1) the full
dataset (discovery cohort n=22,601, held-out replication n=22,601), (2) an MDD-enriched
subset of clinically diagnosed individuals (n=1,616, ICD-10 codes with PHQ-9 and GAD7
assessments), and (3) sex-stratified subsets (male: n=10,416; female: n=12,185). We used
logy-transformed NPX values with mean imputation for missing values.

2.2 Clustering Methodology

We implemented three complementary clustering approaches to analyze proteomic patterns.
Our primary method, IDEC, uses a deep learning framework to simultaneously learn data
representations and cluster assignments. We compared this against two baseline approaches:
PKM (Principal Component Analysis with k-means) and UH (UMAP with HDBSCAN).
This multi-method strategy enables robust validation of identified patterns across different
algorithmic paradigms.

2.3 Model Configuration

Our IDEC implementation used a symmetric autoencoder architecture (Figure 1) with
encoder dimensions d-500-500-2000-z and ReLU activations. Through empirical evaluation,
we identified optimal parameters including latent dimension z=16, layer scaling factor
1s=1.0, batch size 256, learning rate 0.0001, and reconstruction loss weight y=0.1, using
10,000 pretraining and 25,000 training epochs. For baseline comparisons, PKM used 16
components, while UH employed 100 neighbors.
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Figure 1: The network structure of IDEC. The encoder and decoder are composed of fully
connected layers. Clustering loss scatters the embedded points z while reconstruction loss
preserves local structure.

2.4 Evaluation Framework

We assessed clustering performance through technical metrics and biological validation.
Technical evaluation used three complementary measures: Silhouette score (cluster co-
hesion), Davies-Bouldin index (cluster separation), and Calinski-Harabasz score (cluster
density). For biological validation, we examined demographic distributions (age, sex, BMI)
across clusters and analyzed MDD prevalence patterns using bootstrap confidence intervals
and chi-square tests with Bonferroni correction.
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Table 1: Comparison of Clustering Methods Across Different Cohorts

Cohort Method k SilhouetteT Davies-Bouldin| Calinski-Harabasz?
PCA + k-means 2 0.225 1.562 19,195.0
PCA + k-means 3 0.153 1.867 13,989.2
PCA + k-means 4 0.142 1.815 11,743.4
Original (n=22,601) UMAP + HDBSCAN - 0.196 0.633 858.3
IDEC 2 0.787 0.296 514,862.9
IDEC 3 0.637 0.456 248,971.3
IDEC 4 0.542 0.595 79,353.2
PCA + k-means 2 0.242 1.489 4,887.8
PCA + k-means 3 0.156 1.841 3,474.4
PCA + k-means 4 0.149 1.790 2,908.2
Female-Only (n=12,185) UMAP + HDBSCAN - 0.051 0.719 234.6
IDEC 2 0.633 0.496 40,269.1
IDEC 3 0.295 1.127 11,123.2
IDEC 4 0.401 1.035 17,367.8
PCA + k-means 2 0.242 1.495 4,074.8
PCA + k-means 3 0.152 1.893 2,896.7
PCA + k-means 4 0.148 1.798 2,418.7
Male-Only (n=10,416) UMAP + HDBSCAN - 0.190 0.825 410.3
IDEC 2 0.576 0.590 25,880.7
IDEC 3 0.282 1.409 3,674.2
IDEC 4 0.357 1.253 11,118.7
PCA + k-means 2 0.226 1.560 594.6
PCA + k-means 3 0.145 1.961 421.9
PCA + k-means 4 0.145 1.800 364.8
MDD-Enriched (n=1,616) UMAP + HDBSCAN - 0.601 0.545 2,409.3
IDEC 2 0.161 2.069 353.1
IDEC 3 0.106 2.186 248.8
IDEC 4 0.095 2.342 205.1

All methods use a 16-dimensional representation for fair comparison. For PCA + k-means and IDEC, k is varied. UMAP +

HDBSCAN does not require specifying k. Boldface indicates the best score in each cohort for each metric.

3 Results

As an initial validation, our IDEC implementation reproduced performance metrics from
Guo et al. (2017) on MNIST (87.2% accuracy, 86.1% NMI).

3.1 Full Dataset Analysis

Analysis of the discovery cohort (n=22,484) revealed substantial performance differences
across methods (Table 1). IDEC with k=2 achieved superior scores across all quality metrics,
significantly outperforming both baseline approaches. Notably, clustering quality decreased
monotonically with increasing k, suggesting the data naturally separates into two primary
groups.

The optimal two-cluster solution revealed biological sex as the dominant organizing factor
(x*=6.056, p=1.386e-02). UMAP visualization of the 16-dimensional IDEC embeddings
(Figure 2) shows two distinct regions with internal sex-based gradients. Despite strong
technical clustering performance, MDD-related patterns showed minimal between-cluster
variation (6.5-7.7%). Instead, we observed continuous demographic gradients, particularly
in BMI-MDD relationships that transcended cluster boundaries.

3.2 Sex-Stratified Analysis

To investigate whether sex differences masked subtler depression-specific signals, we an-
alyzed female-only (n=12,185) and male-only (n=10,416) cohorts independently. Across
both populations, IDEC with k=2 maintained superior clustering performance compared
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(a) UMAP colored by sex (b) UMAP colored by MDD Status and Sex

Figure 2: UMAP projections of IDEC embeddings (k=2) for the full UKB proteomics dataset
(n=22,601). (a) Shows cluster organization colored by sex. (b) Shows the same embedding
space colored by MDD status.

Table 2: Cluster Numbers Ablations for Sex-Stratified Analysis.

Male Cohort Female Cohort
Metric k=2 k=3 k=4 | k=2 k=3 k=4
Cluster Characteristics
Size Range 5170-5176  1313-4568 253-3556 | 5949-6189 3765-4244  2371-3483
Balance Ratio 0.999 0.287 0.071 0.961 0.887 0.681

Depression Patterns

MDD Rate Range (%) 5.6-6.0 4.3-6.3 5.1-6.5 7.3-9.1 7.1-9.5 6.9-9.6
Max Difference (%) 0.4 2.0 1.4 1.8 24 27
CI Overlap (%) 924 83.7 76.5 88.2 79.4 72.8

Balance Ratio = smallest/largest cluster size. CI Overlap = percentage of cluster pairs with overlapping MDD rate confidence

intervals. Max Difference = largest absolute difference in MDD rates between any pair of clusters. All configurations use z=16,
1s=1.0, batch=256, pretrain=10k, train=25k, 1Ir=0.0001, 7=0.1

to baseline methods (Table 1). However, examination of MDD prevalence within these
refined clusters revealed limited evidence for biologically distinct subtypes. As shown in
Table 2, increasing cluster numbers did not produce meaningful differences in MDD rates,
with prevalence varying by less than 3% even at higher k values. Moreover, increased
granularity often led to imbalanced cluster sizes, particularly in the male cohort, reducing
interpretability.

3.3 MDD-Enriched Analysis

Analysis of the clinically homogeneous MDD-enriched subset (n=1,616) revealed different
methodological challenges. Unlike larger cohorts, this smaller sample favored UH, which
achieved superior clustering scores compared to both PKM and IDEC (Table 1). This
methodological shift likely reflects UH’s robustness to limited sample sizes, where deep
architectures typically struggle. However, even with this more suitable approach, clustering
patterns primarily reflected demographic gradients rather than depression-specific subtypes,
supporting the gradient-based nature of depression’s proteomic architecture.

4 Discussion and Conclusion

Our comprehensive analysis reveals that depression’s proteomic landscape manifests as
a continuous gradient rather than discrete clusters. This finding persisted across multiple
analytical approaches, cohort compositions, and clustering granularities. Even IDEC, which
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excels at uncovering complex latent structures, consistently identified broad demographic
patterns rather than depression-specific subtypes. Quantitatively, MDD rates showed mini-
mal variation between clusters (6.5-7.7%), with overlapping confidence intervals suggesting
no distinct depression subtypes. Instead, we observed continuous demographic gradients,
particularly in the relationship between BMI and MDD risk. High-BMI groups consistently
showed elevated MDD rates compared to low-BMI groups across clusters (7.9-9.4% vs
5.0-6.0%, p=4.8e-12 - 7.3e-10), indicating that this biological association transcends cluster
boundaries.

These results align with emerging perspectives in psychiatry that favor dimensional frame-
works over categorical classifications. The persistent gradient-based organization we ob-
served suggests that future biomarker discovery efforts might benefit from embracing this
inherent continuity rather than seeking discrete subtypes. This shift in perspective could
inform more nuanced approaches to personalized interventions, acknowledging the smooth
transitions in biological states that appear to characterize depression at the proteomic level.

Our extensive experimentation with IDEC revealed significant challenges in parameter
optimization that warrant discussion. The algorithm’s sensitivity to hyperparameters
necessitated comprehensive tuning across latent dimensions (2-32), number of clusters (2-
10), batch sizes (16-256), learning rates (10~°-10~%), and loss weighting coefficients (0.01-0.5).
The two-phase training process, involving autoencoder pretraining followed by end-to-
end optimization, introduced additional complexity. Notably, increasing cluster numbers
did not produce meaningful differences in MDD rates, with less than 3% variation in
prevalence even at higher k values. Confidence intervals for MDD rates across clusters
maintained substantial overlap (>72%), further supporting a continuous rather than discrete
distribution. We found that while IDEC could effectively separate clusters in the latent space
(achieving Silhouette scores of 0.787 for k=2), the resulting embeddings often appeared
artificially compact without dimensionality reduction techniques like UMAP, suggesting
potential over-compression of the continuous biological variation.

Several key technical limitations of IDEC emerged during our implementation. First, we
observed that significant loss reduction required extraordinarily long training periods, with
meaningful improvements continuing well beyond 20,000 epochs - substantially longer
than reported in previous applications. This extended convergence time imposed consider-
able computational costs, particularly for large-scale proteomic datasets. Our attempts to
optimize the architecture through scaling layers proved ineffective, suggesting limitations
in the model’s ability to adapt to varying data scales. The two-phase training process,
while theoretically sound, introduced additional complexity in practice as the transition
between pretraining and clustering optimization often led to instability. We found that
while IDEC could achieve strong clustering metrics (Silhouette scores of 0.787 for k=2),
these quantitative improvements did not necessarily translate to biologically meaningful
separations.

Recent advances in proteomic analysis have increasingly demonstrated that many biological
processes follow continuous trajectories rather than discrete states. This emerging pattern
suggests a broader principle: complex biological processes, particularly in psychiatric
disorders, may be better understood through gradient-based models rather than categorical
frameworks. The consistency of this observation across different analytical approaches
and biological domains strengthens the case for dimensional perspectives in biomarker
development and precision medicine. Our work extends this paradigm specifically to
psychiatric phenotypes, where the historical focus on categorical diagnoses may have
inadvertently obscured important biological patterns.

The convergence of our findings with broader trends in biological machine learning suggests
that future methodological development should prioritize approaches that can effectively
model and interpret continuous variation. This could include extending deep clustering
frameworks to explicitly accommodate gradient structures, developing hybrid methods
that combine discrete and continuous representations, or exploring novel visualization
techniques that better capture biological continuity. Such advances would be particularly
valuable for psychiatric research.
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